博碩士論文 88323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.142.173.227
姓名 蘇瑞期(Rei-Qi Su )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測
★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用
★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測
★ 四維質點影像測速技術與微尺度紊流定量量測★ 潔淨能源:超焓燃燒器研發
★ 小型熱再循環觸媒燃燒器之實驗研究及應用★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應
★ 預混甲烷紊焰拉伸量測,應用高速PIV★ 氫能利用:過焓觸媒熱電產生器之實作研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用一自行設計開發之紊流尾流燃燒器,來觀測一由上往下傳播預混層焰與紊流尾流交相干涉之情形。由於預混焰受紊流尾流渦漩陣列的影響會產生拉伸效應,為了探討拉伸效應和紊流燃燒速度,本實驗使用高速雷射斷層攝影術及質點影像測速儀兩種技術,配合研究級甲烷或丙烷與乾燥空氣所混合之預混燃氣作一系列實驗。尾流渦漩基本上可分為二種,擴張應變渦對及壓縮應變渦對,實驗觀察到壓縮應變渦對與預混焰的交相干涉,比擴張應變渦對具有較高的燃燒速度,壓縮應變渦對可直接將火焰帶入順時針旋轉的渦心內燃燒,由渦心而層層迅速往徑向方向燃燒,其另一半逆時鐘旋轉渦漩則相對燃燒較慢,這是因為渦對軸心線與預混焰平面呈一非直角夾角再加上浮力效應,故會有此一不對稱燃燒情形發生。
沿著雷射斷層火焰面來計算火焰局部拉伸率(含曲率項和應變項),發現越靠近擴張應變渦漩之渦心時,其拉伸率值越大,此結果與Driscoll et al. (1994)在單一軸對稱渦漩(軸心線與預混焰平面呈90°)之結果相同。當越靠近渦心時, 沿著火焰面切線方向的速度梯度(應變項)越大,故有較大的拉伸率。吾人發現曲率項對火焰拉伸之影響遠比應變項大,因此可用曲率項來近似火焰拉伸率。由拉伸率之機率密度函數分佈,可發現拉伸率會隨著時間的增加而減小,顯示非定常效應,若紊流能量不能由外界繼續提供,紊流尾流結構會迅速消散,加上燃燒生成物具高溫會大大提高生成物之運動黏滯係數(最高約是原反應物之25倍),故皺摺火焰會有層流化的現象產生。
為了量測不同紊流強度對紊流燃燒速度的影響,吾人於平板上加裝不同厚度之擾流板來增加紊流強度,所得結果並與先前實驗和理論結果作比較。本實驗所得之紊流燃燒速度結果明顯大於先前我們在十字型燃燒爐(近似等向性紊流場)所獲之結果,主要原因為後者乃一三維紊流場,可觀測到有部分火焰會相互撞擊,造成整體火焰面積並非隨著紊流強度作線性增加,而使得紊流燃燒速度增加幅度不如本實驗。然而紊流尾流會隨時間而消散,從紊流燃燒速度的量測可明顯看出兩不同區域的存在,因此對本實驗所得之紊流燃燒速度,雖然其具有學術參考價值,但必須小心的看待,因其燃燒速度會隨時間作小改變。
摘要(英) This research uses a self-designed turbulent wake burner to investigate a downward propagating premixed flame interacting with a turbulent wake. Since the interaction of flame and wake can produce the so-called flame stretching effects. To study the stretching effects and ST, we apply high-speed laser tomography and particle image velocimetry (PIV), use research-grade methane or propane -air mixtures, and conduct a series of experiments. Basically, there are two types of wake vortices, a compressive strain (counter-rotating) vortex pair and an extensive strain vortex pair. It is found that flame-wake interactions in compressive strain vortices are more intense than in extensive strain vortices. This is because the compressive strain vortex pair can engulf directly the flame into the clockwise-rotating vortex core. Burning starts at the vortex core and through layers and layers radially. The other half, counter-rotating vortex has slower burning rates. This asymmetry of burning is due to the facts that the axis of the vortex pair is not perpendicular to the flame front and the buoyancy effect matters.
We calculate the local flame stretching rate (including the curvature rate and the aerodynamic strain rate) along the wrinkled flame front at different times using laser tomography and PIV techniques. For the extensive strain vortex pair, values of the stretching rate increase along the wrinkled flame front from the vortex tip to the position which is close to the vortex core. This result is similar to that of Driscoll et al. (1994) using a single axisymmetric vortex pair interacting with a premixed flame. It is found that the curvature term is much more important than the strain rate term. Thus, the stretching rate may be approximated by the curvature term alone. From the probability density function of the stretching rate, we found that the stretching rate changes with time , indicating that the unsteady effect cannot be neglected.
In order to measure the effect of turbulent intensity to ST, we put the thin disturbance slices with different heights on the edge of the sliding plate. The results are then compared with previous experimental and theoretical results. It is found that the present ST measurements are much higher than our previous data using a cruciform burner which can produce a near-isotropic turbulent flow field. This may be because in the 3-D near-isotropic turbulent flow field many flame-flame collisions and annihilations are frequently observed. Therefore, the increase of the total flame area is not linearly proportional to the turbulent intensity, values of ST obtained in 3-D near-isotropic turbulence field using the cruciform burner are found to be much less than that of the present measurements for 2-D flame-wake interactions. However, the latter is not stationary and must be viewed with caution.
關鍵字(中) ★ 拉伸率
★  紊流尾流
★  紊流燃燒速度
★  預混焰
關鍵字(英) ★ premixed flame
★  stretch rate
★  turbulent wake
論文目次 摘要...............................................................................................................I
英文摘要.................................................................................................... II
誌謝.............................................................................................................III
目錄.............................................................................................................IV
圖表目錄....................................................................................................VI
符號說明.....................................................................................................X
第一章 前言.................................................................................................1
1.1 動機.....................................................................................................1
1.2 問題所在............................................................................................2
1.3 解決提案和論文架構.......................................................................4
第二章 文獻回顧........................................................................................7
2.1 薄碎焰(Flamelet)理論........................................................................7
2.2 預混紊流燃燒區域圖.......................................................................8
2.3 拉伸效應對預混焰的影響.............................................................12
2.3.1 拉伸的基本定義................................................................12
2.3.2 正拉伸與負拉伸................................................................13
2.4 預混焰流力和擴散不穩定性........................................................15
2.5 非定常火焰拉伸效應.....................................................................17
第三章 實驗設備和量測方法.................................................................24
3.1 紊流尾流燃燒設備介紹.................................................................24
3.2 紊流尾流...........................................................................................27
3.3 雷射斷層攝影術..................................................................................29
3.4 影像處理...............................................................................................32
3.5 質點影像測速儀..................................................................................33
3.6 拉伸率之計算..................................................................................... 34
3.6.1 曲率項之計算...............................................................................34
3.6.2 空氣動力應變項及膨脹率之計算............................................35
3.7紊流強度和紊流燃燒速度之量測估算...........................................35
3.8實驗誤差評估......................................................................................37
3.8.1 雷射斷層攝影術..........................................................................37
3.8.2 PIV之量測精確度........................................................................38
第四章 預混焰與尾流之非定常拉伸分析...........................................48
4.1火焰動態傳播分析,應用雷射斷層攝影術...............................48
4.2拉伸率與膨脹率之關係..................................................................51
4.3拉伸率、應變率及曲率之間的關係............................................55
4.4拉伸率、應變率、曲率及膨脹率之機率密度函數分佈.........57
第五章 紊流燃燒速度估算.....................................................................83
5.1 紊流強度對燃燒速度的影響........................................................83
5.2 相關實驗理論與結果之比較........................................................85
第六章 結論與未來工作..........................................................................98
6.1 結論....................................................................................................98
6.2 未來工作.........................................................................................100
參考文獻...................................................................................................102
附錄A-曲率之計算..................................................................................107
參考文獻 Abdel-Gayed, R. G., Bradley, D., and Lawes, M., "Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates," Proc. R. Soc. (London) A, Vol. 414, pp. 389-413 (1987).
Aldredge, R. C., Voezi, V., and Ronney, P. D., "Premixed Flame Propagation in Turbulent Taylor-Couette Flow," Combust. Flame, Vol. 115, pp. 395-405 (1998).
Anand, M. S., and Pope, S. B., "Calculations of Premixed Turbulent Flames by PDF Methods," Combust. Flame, Vol. 67, pp. 127-142 (1987).
Bedat, B., and Cheng, R. K., "Experimental Study of Premixed Flames in Intense Isotropic Turbulence," Combust. Flame, Vol. 100, pp. 485-494 (1995).
Borghi, I. S., "On the Structure and Morphology of Turbulent Premixed Flames," Recent Advances in the Aerospace Sciences, (Corradi Casci, Ed.), Plenum, pp. 117-138 (1985).
Bradley, D., "How Fast Can We Burn?" Proc. Combust. Inst., Vol. 24, pp. 247-262 (1992).
Bray, K. N. C., Libby, P. A., and Moss, J. B., "Scalar Length Scale Variations in Premixed Turbulent Flames," Proc. Combust. Inst., Vol. 20, pp. 421-427 (1984).
Bray, K. N. C., Libby, P. A., and Moss, J. B., "Unified Modeling Approach for Premixed Turbulent Combustion-Part 1: General Formulation," Combust. Flame, Vol. 93, pp. 445-456 (1985).
Bray, K. N. C., "Studies of the Turbulent Burning Velocity," Proc. R. Soc. (London) A, Vol. 431, pp. 315-335 (1990).
Breidenthal, R. E., Tong, K. O., Wong, G. S., Hamerquist, R. D., and Landry, P. B., "Turbulent Mixing in Two-Dimensional Ducts with Transverse Jets," AIAA J., Vol.27, No(11), pp. 1867-1869 (1986).
Damkohler, "The Effect of Turbulence on the Flame Velocity in Gas Mixtures," Z. Elektrochem., Vol. 46, pp. 601-652 (1940). (English translation NASA Tech. Mem. 1112, 1947).
Driscoll, J. F., Sutkus, D. J., Roberts, W. L., Post, M. E., and Goss, L. P., "The Strain Exerted by a Vortex on a Flame一Determined from Velocity Field Images," Combust. Sci. Technol., Vol. 96, pp. 213-229 (1994).
Glassman, I., Combustion, 3rd Edition, Academic Press, New York (1996).
Gerald, C. F., and Wheatley, P. O., Applied Numerical Analysis, 4th Ed., New York, Addison Wesley (1992).
Gouldin, F., "An Application of Fractals to Modeling Premixed Turbulent Flames," Combust. Flame, Vol. 68, pp. 249-266 (1987).
Haworth, D. C., and Poinsot, T. J., "Numerical Simulations of Lewis Number Effects in Turbulent Premixed Flames," J. Fluid Mech., Vol. 244, pp.405-436.
Law, C. K., Zhu, D. L., and Yu, G., "Propagation and Extinction of Stretched Premixed Flames," Proc. Combust. Inst., Vol. 21, pp. 1419-1426 (1986).
Law, C. K., "Dynamics of Stretched Flames." Proc. Combust. Inst., Vol. 22, pp. 1381-1402 (1988).
Mueller, C.J., Driscoll, J. F., Reuss, D. L., and Drake, M. C., "Effect of Unsteady Stretch on the Strength of a Freely-Propagating Flame Wrinkled by a Vortex," Proc. Combust. Inst., Vol. 26, pp. 347-355 (1996).
Mueller, C. J., Driscoll, J. F., Reuss, D. L., Drake, M. C., and Rosalik, M. E., "Vorticity Generation and Attenuation as Vortices Convect Through a Premixed Flame," Combust. Flame, Vol. 112, pp. 342-358 (1998).
Nye, D. A., Lee, J. G., and Santavicca, D. A., "Flame Stretch Measurements During the Interaction of Premixed Flames and Karman Vortex Streets Using PIV," Combust. Flame, Vol. 105, pp. 167-179 (1996).
Peters, N., "Laminar Flamelet Concepts in Turbulent Combustion," Proc. Combust. Inst., Vol. 21, pp. 1231-1250 (1986).
Peters, N., Turbulent Combustion, Cambridge, England, Cambridge University Press (2000).
Poinsot, T., Veynante, D., and Candel, S., "Diagrams of Premixed Turbulent Combustion Based on Direct Simulation," Proc. Combust. Inst., Vol. 23, pp. 613-619 (1990).
Poinsot, T., Veynante, D., and Candel, S., "Quenching Processes and Premixed Turbulent Combustion Diagrams," J. Fluid Mech., Vol. 228, pp. 561-606 (1991).
Schlichting, H., Boundary-Layer Theory, 7th Ed., New York, McGraw-Hill (1979).
Sivashinsky, G., in Dissipative Structures in Transport Processes and Combustion (D. Meinkohn, Ed.), Springer Series in Synergetics, Vol.48, Berlin, Springer-Verlag (1990).
Searby, G., and Quinard, "Direct and Indirect Measurements of Markstein Numbers of Premixed Flames," Combust. Flame, Vol. 82, pp.298-311 (1990).
Shy, S. S., Lee, E. I., Chang, N. W., and Yang, S. I., "Direct and Indirect Measurements of Flame Surface Density, Orientation, and Curvature for Premixed Turbulent Combustion Modeling in a Cruciform Burner," Proc. Combust. Inst., Vol. 28, pp. 383-390 (2000a).
Shy, S. S., Lin, W. J., and Wei, J. C., "An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion," Proc. R. Soc. (London) A, Vol. 456, pp. 1997-2019 (2000b).
Tennekes, H., and Lumley, J. L., A First Course in Turbulence, Cambridge, Massachusetts, The MIT Press (1972).
Trouve, A., and Poinsot, T., "The Evolution Equation for the Flame Surface Density in Turbulent Premixed Combustion," J. Fluid Mech., Vol. 278, pp. 1-31 (1994).
Tseng, L. K., Ismail, M. A., and Faeth, G. M., "Laminar Burning Velocities and Markstein Numbers of Hydrocarbon/Air Flames," Combust. Flame, Vol. 95, pp. 410-426 (1993).
Vagelopoulos, C. M., Egolfopoulos, F. N., and Law, C. K., "Further Considerations on the Determination of Laminar Flame Speeds with the Counterflow Twin-Flame Technique," Proc. Combust. Inst., Vol. 25, pp. 1341-1347 (1994).
Veynante, D., Piana, J. M., Duclos, J. M., and Martel, C., "Experimental Analysis of Flame Surface Density Models for Premixed Turbulent Combustion," Proc. Combust. Inst., Vol. 26, pp. 413-420 (1996).
Williams, F. A., Combustion Theory, 2nd ed., Addison-Wesley, Redwood City (1985).
Wu, M. S., and Driscoll, J. F., "A Numerical Simulation of a Vortex Convected Through a Laminar Premixed Flame," Combust. Flame, Vol. 91, pp. 310-322 (1992).
Yakhot, V., "Propagation Velocity of Premixed Turbulent Flame," Combust. Sci. Technol., Vol. 60, pp. 191-214 (1988).
魏建樟 "應用雷射斷層攝影術探討預混紊焰傳播",國立中央大學機械工程研究所,碩士論文(1999)。
林文基 "甲烷與丙烷預混紊流燃燒速度的量測",國立中央大學機械工程研究所,碩士論文(1999)。
李以霠 "預混紊流燃燒火焰表面密度傳輸方程式之實驗分析",國立中央大學機械工程研究所,碩士論文(1999)。
黎文孝 "預混火焰與尾流交相干涉之實驗研究",國立中央大學機械工程研究所,碩士論文(2000)。
指導教授 施聖洋(Shenqyang Shy) 審核日期 2001-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明